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Abstract
Properties of a molecule depend on a variety of relationships between its atoms. On a high level, these
relationships might include spatial proximity, the existence of a chemical bond, or simply a co-occurrence
of two atoms. However, the commonly used graph-based models use only the chemical bonds to define
the neighbourhood. Motivated by this we propose Molecule Transformer (MT) model. Our key
innovation is augmenting the attention mechanism in Transformer using the inter-atomic distances,
and the molecular graph structure. Experiments on molecular property prediction tasks show
that our method outperforms all the other tested models on multiple tasks. We also show
that individual attention heads implement different yet chemically interpretable functions.
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We introduce Molecule Transformer (MT), a Transformer-based [1] model adapted to processing
molecules. The architecture is shown in the figure above.
Molecule Transformer consists of N blocks followed by pooling and a classification layer. Each block is
composed of a molecule multi-head self-attention layer, followed by a feed-forward block that includes a
residual connection and layer normalization.
The multi-head self-attention is composed of H heads. Each head takes as input hidden state H and
computes first Qi = HWQ

i , Ki = HWH
i , and Vi = HWV

i . These are used in the attention operation
as follows:

A (Qi,Ki,Vi) =
(
λasoftmax

(
QiKT

i√
dk

)
+ λdg(−D) + λgA

)
Vi,

where the molecule structure is represented by the graph adjacency matrix A ∈ {0, 1}N×N , and the
inter-atomic distance matrix D ∈ RN×N . λa, λd, and λg denote scalars weighting the self-attention,
distance, and adjacency matrices.

Toy Task
The toy task is to predict whether two substructures (-NH2 fragment and tert-butyl group) co-occur
within the given distance. MT can efficiently use the inter-atomic distances to solve the toy task (see
left). Additionally, the performance is heavily dependent on λd (λ distance), which motivates tuning λ
parameters in the main experiments (see right).
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Interpretability
The self-attention outputs from each head are noticeably different and seem to be interpretable. Below
we study such patterns on the example of the BBBP test dataset (see Experiments). For instance, we
see that head 4 puts a large weight between the nitrogen atoms in the imidazole ring and the oxygen
atoms of the oxo groups.
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We noticed more patterns like this in the dataset. E.g.

1. Head that seems to focus on the non-carbon atoms connected by only one bond;

2. Head that seems to focus on the carbon atoms within ring structures;

3. Head that seems to focus on the positions of electronegative atoms, but not nitrogen or oxygen.

For each head h and its associated atomic pattern ah (e.g. “atom in a carbon ring“) let h(ah) denote
the overall attention strength assigned by the head h to the given atomic pattern ah. We report in the
left table h(ah) for the three selected heads and atomic pattern pairs. In the right table we report how
often h(ah) is highest for all atoms a in the molecule.

Head1 Head2 Head3

Selected 5.23 1.24 1.27
Random 0.41 0.68 0.60

Head1 Head2 Head3

81.3% 72.0% 68.7%

Experiments
Datasets. We run experiments on a wide range of datasets that represent typical tasks encountered
in molecular modeling.
• FreeSolv, ESOL. Regression tasks. Popular tasks for predicting water solubility in terms of the
hydration free energy (FreeSolv) and logS (ESOL).

• Blood-brain barrier permeability (BBBP). Binary classification task.

• MetStabhigh, MetStablow. Binary classification tasks. The metabolic stability of a compound
is a measure of the half-life time of the compound within an organism.

• hERG, Estrogen Alpha, Estrogen Beta. Binary classification tasks for predicting binding
affinity.

FreeSolv, ESOL and BBBP are popular benchmarks for predicting physical and toxicity-related properties,
also included in the MoleculeNet benchmark [2]. The other datasets we consider are aimed to represent
biophysical tasks, and were either taken from publications [3] (MetStab datasets) or extracted by us
from ChEMBL [4] (hERG and Estrogen datasets).

Experimental setting. We compare Molecule Transformer to the following models: Graph Convolu-
tional Networks (GCN), Random Forest (RF), Support Vector Machine with RBF kernel (SVM), Edge
Attention-based Multi-relational Graph Convolutional Networks (EAGCN) [5], Message Passing Neural
Networks (MPNN) [6] and Weave [7].
For all the models we tune the hyperparameters by a random search with a fixed budget of 100 trials.
The MT model contains many hyperparameters and can benefit from extending or refining the search
algorithm. We show this in the MT566 model, where the search budget is extended to 500 runs and
additionally the lambda parameters have a second stage of search (with other parameters fixed).
We use random split for FreeSolv, ESOL and MetStab datasets. For all the other datasets we use
scaffold split. Test performance is based on the best validation epoch. Each training was repeated three
times.

Results
BBBP (AUC) ESOL (RMSE) FreeSolv (RMSE) Estrogen Alpha (AUC) Estrogen Beta (AUC) hERG (AUC) MetStablow (AUC) MetStabhigh (AUC)

SVM 0.603 ± 0.000 0.493 ± 0.000 0.391 ± 0.000 0.933 ± 0.000 0.765 ± 0.000 0.810 ± 0.000 0.828 ± 0.000 0.822 ± 0.0
RF 0.551 ± 0.005 0.533 ± 0.003 0.550 ± 0.004 0.928 ± 0.003 0.770 ± 0.004 0.769 ± 0.003 0.796 ± 0.004 0.706 ± 0.008
GC 0.690 ± 0.015 0.334 ± 0.017 0.336 ± 0.043 0.974 ± 0.005 0.726 ± 0.011 0.917 ± 0.015 0.856 ± 0.013 0.874 ± 0.014
Weave 0.703 ± 0.012 0.389 ± 0.045 0.403 ± 0.035 0.961 ± 0.005 0.766 ± 0.018 0.765 ± 0.034 0.612 ± 0.009 0.778 ± 0.039
MPNN 0.700 ± 0.019 0.303 ± 0.012 0.299 ± 0.038 - - - - -
EAGCN 0.664 ± 0.007 0.459 ± 0.019 0.410 ± 0.014 0.937 ± 0.031 0.724 ± 0.025 0.826 ± 0.011 0.779 ± 0.034 0.697 ± 0.019
MT 0.711 ± 0.007 0.330 ± 0.002 0.269 ± 0.007 0.977 ± 0.003 0.790 ± 0.003 0.906 ± 0.007 0.839 ± 0.009 0.892 ± 0.005

MT566 0.736 ± 0.009 0.298 ± 0.005 0.259 ± 0.014 0.981 ± 0.002 0.778 ± 0.006 0.92 ± 0.002 0.877 ± 0.013 0.894 ± 0.008
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