
PRISM
- a writing assistant for

the language of proteins



Language is an inseparable companion 
of our species. To study humans means 
to investigate the language we use,
how it shapes us, and how we use it
to discover the world. Languages hold 
the key to understanding our past,
often posing challenges to translators.
Celebrated examples are Ancient 
Egyptian Hieroglyphs and the Linear
B script from Mycenaean Greece. The 
heroic decoding of these languages by 
Champollion, Ventris, and Chadwick, 
allowed us to recover lost languages
and decipher the cultural heritage of 
these long-gone civilizations. There is, 
however, an even more ancient language 
which orchestrates what happens inside 
our bodies-the language of proteins.

Proteins and peptides, the indispensable building blocks of living organisms, are written 
using a secret language.1 Its characters are 20 types of amino acid residues which bind 
together to form words and sentences which carry messages and instructions inside the 
body. In reality, these messages take the form of complex three-dimensional molecules, 
whose detailed dynamics remain poorly understood. For instance, understanding the 
process by which proteins fold remains one of science’s most compelling mysteries. 
Moreover, the information required to crack this puzzle is hard to obtain and often
missing-only about 50% of the human proteome structure is known.2

Just as decoding ancient languages provides a window into understanding long-gone 
cultures, cracking the code of proteins will open several avenues for progress in biology. 
With this knowledge, we could simply read the mechanisms behind countless diseases and 
re�ne our methods for drug discovery. For instance, important functions of a protein and its 
interactions with other macromolecules, are mediated by structural domains called binding 
pockets.3 These pockets can be imagined as small indentations or cavities on the surface of 
the molecule. Their positioning and shape, encoded by the amino acid sequence, dictate 
the type of process they will participate in. Most importantly, some of these pockets are 
potentially druggable sites. A better understanding of binding pockets would inform and 
streamline the in silico stage of drug development.

Treating proteins as three-dimensional quantum mechanical systems has proven
extremely time and resource consuming. Could it be that the linguistic picture goes beyond 
a super�cial analogy and leads to actual breakthroughs? We hinted at the amino
acid chain-or primary structure-as raw text written with a 20 amino-acid alphabet. 
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Figure 1.
Minoan  Linear B script from the Phaistos disk.

https://www.biorxiv.org/content/10.1101/265231v1
https://www.sciencedirect.com/science/article/pii/S0022283619302037
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859996/


But the power of language lies in how characters connect to create meaning. Perhaps it 
would be possible to import techniques of linguistics to biology, for example, by borrowing 
the concept of corpus, which collects amino acid data and extracts information about
correlations between them. These correlations can help explain rules governing the
“protein language” codifying formation of the higher-order structures. And all this can
be achieved without prior knowledge about 3D structure.

Figure 2.
Representation of possible impact of changing a single amino acid within the binding pocket of a protein. Top left: a 
cross-section of a binding pocket of a kinase. Top right: The cross-section with a bound compound. Bottom left: 
The same protein with one amino acid changed to Tryptophan. Bottom right: imposed binding mode of the 
compound. This image clearly shows that changing a single amino acid can have a significant impact on the binding 
properties of a protein.
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Remarkably, this approach has proven quite promising. The last decade has seen
momentous advances in ML-driven natural language processing (NLP) techniques. 
Methods for machine translation and text generation have reached astonishing levels
of performance. Google’s BERT4 and OpenAI's GPT-35 stand as towering achievements
in the �eld. The idea of using NLP methods such as these to decipher mysterious
languages-whether ancient6 or biological7-is gathering momentum.

At Ardigen, we decided to take part in this exploration and use the linguistic approach
to tackle questions of clinical relevance; namely, that of optimizing the binding capabilities 
of peptides. Our model-Protein Re�nement by Intelligent Sequence Modi�cation (PRISM)
-is capable of recognizing the binding pockets in a peptide starting just from the raw amino 
acid sequence. Further, it is capable of estimating the “stickiness” of the pocket-by 
measuring its docking energy-and suggesting modi�cations to increase it. PRISM can 
deliver new insights for predicting protein-protein interactions and protein-peptide 
interactions. It can also suggest atypical pocket-forming sequences, opening up new 
avenues in pharmacology research.

Step back and picture the enormous complexity of this problem. Finding the binding 
properties of such a complex molecule using three-dimensional modeling seems
intractable. However, PRISM learns how to solve this problem in a surprisingly intuitive 
fashion. PRISM follows the concept of BERT, where the model internalizes the notion of 
sentence, including contextual information. First, PRISM looks at enormous corpora of 
protein sequences and learns to perform the task of sentence completion. 

Figure 3.
PRISM  running on a peptide sequence and suggesting modifications that would reduce the docking energy and 
lead to a more bindable molecule.
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PRISMStarting sequence:
...KTKEVPVAIKYTLKAGY...

Docking energy: -12 kcal/Mol

Optimized sequence:
...KTKLVPVAIFYWLKAGY...

Docking energy: -12.6 kcal/Mol

https://arxiv.org/pdf/1706.03762.pdf
https://openai.com/blog/openai-api/
https://arxiv.org/pdf/1906.06718.pdf
https://bair.berkeley.edu/blog/2019/11/04/proteins/


That is, if we present it with a partially covered sequence of amino acids, PRISM is capable of 
predicting the missing sequence with high accuracy. Later, PRISM is trained to recognize 
secondary structures, i.e. local geometry out of raw sequences. Finally, PRISM spends 
some training cycles looking at binding pockets until it internalizes the concept of 
“pocketedness”.

With this knowledge, starting from raw sequences PRISM is capable of identifying binding 
pockets and exploring the space of real proteins-i.e. grammatically correct sequences-in 
search of more bindable alternatives.

In the linguistic analogy, we advocate, drug development consists of writing the right amino 
acid sentences to confront disease. PRISM acts like a writing assistant helping biomedical 
researchers streamline their e�orts. We have fashioned this tool with a user-friendly GUI 
enabling remote access with cloud computing and fast processing advantages. Users just 
need to introduce the raw amino acid sequence and select their preferences. Equipped with 
PRISM, our customers can streamline their research e�orts by starting the discovery 
process with highly optimised candidates. PRISM can help users improve the catalytic 
properties of enzymes, and introduce substrate selectivity.
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The PRISM pipeline has dramatically improved our discovery 
efforts and uncovered new unexpected lead candidates. In 
addition, the deployment on cloud computing resources has 
allowed our discovery team to explore possibilities that would 
be untenable under traditional settings.

Pawel Fludzinski, PhD. CEO, AmideBio
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While a complete understanding of protein dynamics remains elusive, the linguistic picture 
has proven a viable approach. Just as cracking an ancient script, deciphering the language 
of proteins will bring an entirely new level of understanding. The code hasn’t been broken 
yet, but today’s Champollions are ML-enhanced.

Figure 4. 
Fragment of the user interface of PRISM where user refine search for new binding  pockets
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