
Figure 3. Two-dimensional visualization of features extracted from images using 
CellProfiler (CP), chemical structures (ECFP), and our multimodal approach based 
on deep learning embeddings. One point corresponded to a single compound 
and points were generated using the UMAP algorithm [5]. One can observe that 
the multimodal representations are superior in separating different MoAs to the 
human-defined features such as CP and ECFP.  
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ABSTRACT

The Cell Painting protocol, recognized as a key tool for 
drug discovery phenotypic screening, generates rich, 
single-cell resolution data. While traditional analysis 
methods have focused on image data, integrating 
chemical structure information of compounds offers a 
more comprehensive insight. 
We combined both open-source descriptors for images 
and molecules as well as deep learning ones to enhance 
mode of action predictions. This multimodal approach 
marks a significant leap in HCS analysis, promising more 
accurate drug discovery outcomes.

DATASET

We used a dataset released by Bray et al. [1] to 
implement and test our approach. It is a publicly available 
dataset of High Content Screening (HCS) images and 
morphological profiles of 30,000 small-molecule 
treatments.

The dataset was generated by applying Cell Painting 
assay protocol. For each compound, 6-48 fields of view 
were acquired with five fluorescent channels. Figure 1 
presents some examples.

Using data from the ChEMBL repository [4], we assigned 
19 Modes of Action (MoAs) to 2221 compounds from 
the dataset (Figure 4). One compound may have more 
than one MoA assigned.

To ensure reliability of the presented results, we use a 
structural split based on the hierarchical clustering of 
ECFP representations. As a result, the data was split into 
1740 training and 481 test compounds.

METHODS

The goal of our work is to obtain the model accurately 
predicting MoA of a compound using HCS images and 
chemical structures as input. To address 
polypharmacology and the possibility of simultaneous 
modes of action, we defined our problem as a multi-label 
classification task. We compared a variety of data 
representations (human-defined and AI-based), as well as 
uni- and multimodal approaches.

Phenotypic representations. We compared two types 
of phenotypic representations: human-defined features 
obtained with Cell Profiler (CP) and AI-based features 
extracted from the penultimate layer of a deep 
convolutional neural network (GapNet-PL [2]). To obtain a 
phenotypic representation of a well, we used maximum 
aggregation over fields of view. 

Structural representations. Along with the commonly 
used human-defined Extended-Connectivity Fingerprints 
(ECFP), we used deep feature representations from a 
proprietary graph transformer model: Relative Molecule 
Attention Transformer (R-MAT) [3].

Combining modalities. To fuse the visual and chemical 
modalities, we combined phenotypic and structural 
representations via concatenation. For the deep 
learning-based representations, we first trained the 
individual models in a unimodal setting, and used 
extracted features for concatenation.

Classification. Random Forest is used to obtain a final 
prediction. 

RESULTS AND DISCUSSION

To analyze how meaningful the representation types are, 
we visualized the latent space using the UMAP algorithm. 
The representation obtained from deep learning-based 
method clusters compound of the same MoA together, 
thus creating more meaningful representations that 
increases the classifier accuracy (Figure 3).

The effectiveness of the MoA prediction models is 
measured using the ROC AUC metric. One can observe 
that the deep learning-based models exploiting both 
types of data achieve the best performance and obtain 
the highest ROC AUC score for each of the MoAs (Figure 
4).

Using an averaged ROC AUC score (Figure 5), we 
conclude that information fusion from both modalities 
(structural and phenotypic) is the most effective due 
to their synergy (Figure 5).

CONCLUSIONS

We demonstrated a multimodal approach for the task of 
Mode of Action prediction. Our analysis shows that 
phenotypic and structural modalities are 
complementary in case of both human-defined and 
deep learning representations. Moreover, use of deep 
learning improves the performance and reduces the 
computation time of MoA prediction.
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Figure 1. Randomly selected fields of view and associated chemical structures of 
compounds with diverse known MoAs. ✓ indicates assigned MoA, ✕ indicates 
not assigned MoA (ground truth).

Figure 4. Performance of the models trained on different representations for each 
MoA measured by the ROC AUC score. Here, we compare a classifier trained on 
multimodal features, generated by the proposed model, with classifiers trained on 
human-defined image descriptors (CP) and chemical structure descriptors (ECFP). 
We observe that models trained on multimodal representations are superior to the 
ones trained on human-defined features.

Figure 2. Architecture for multimodal MoA classification. Firstly, HCS images and compound structures are passed through deep learning architectures (GapNet and 
graph-based transformer, respectively) to obtain their multidimensional representations. Then, they are fused to create a multimodal feature vector passed to the MoA 
classifier. ✓ indicates MoA presence, ✕ indicates its absence.
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Figure 5. ROC AUC averaged over all of the considered MoAs (top) and inference 
time comparison (bottom). Deep feature representations outperform traditional 
chemical structure descriptors. Deep image representations, while achieving a 
comparable performance to CellProfiler features, are much faster to compute and 
synergize better in a multimodal model. Combining modalities significantly 
improves the performance over models trained on individual modalities.
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