
CONCLUSIONS

ARDIMMUNE VAX

Neoantigens are rapidly gaining interest as central components of personalized cancer therapies, as shown by the 
increasing number of clinical trials for personalized cancer vaccines and adoptive cell therapies. 

One of the main challenges in developing such therapies is that only a small fraction of the detected somatic 
mutations are really immunogenic and can be used as targets of the treatment. Several biological aspects make 
the prediction of effective neoantigens a particularly challenging task. These aspects include: (i) highly individual 
antigenic landscape, (ii) restricted number of targetable mutation-induced neoantigens per tumor, (iii) complex 
tumor subclonal structure, (iv) private neoantigen specific T-cell repertoire, (v) epitope-induced immune tolerance 
and immunotoxicity, (vi) variability in neoepitope-associated gene-expression, etc.

Recent peptide-HLA (pHLA) elution and mass spectroscopy data made it possible to develop models and 
dedicated pipelines accounting for the natural neoantigen presentation [2, 3]. These technologies represent a step 
forward with respect to previous solutions solely based on pHLA binding affinity prediction.

Predicting neoepitopes’ immunogenicity, accounting for safety issues and prioritizing peptides to be used for 
therapy in a fully personalized manner is the end goal of such technologies. Here we compare the performance of 

 with respect to approaches used in literature and industry [1, 2]. The performance of the selected 
models was evaluated on experimentally validated data for patients’ CD8+ T-cell responses.

● For both datasets ArdImmune Vax significantly outperforms methods based on pHLA binding prediction. 

● ArdImmune Vax performs on a par with the EDGETM algorithm [2] for the dataset B.

● The high performance of our model is consistent across cancer types and across cohorts.

1. Cancer Discov. 2019
2. Nat Biotechnol. 2018 
3.  Cell Immunity 2017
4. BioRxiv 2019 (preprint)
5. Nat. Med. 2016
6. Science 2015
7.  Nat. Med. 2018 
8. J Immunol. 2017 
9. Cell Systems 2018

1. Protein effects of the genomic variants identified by the NGS processing phase constitute candidate 
neoepitopes to be analyzed.

2. Multiple biological aspects contribute to the final call of which neoepitopes are the most likely to effectively 
elicit immune response of the patient while avoiding potential side effects.

3. In this case, ArdImmune Vax suggests a peptide-based vaccine composition as a result of the analysis.

INTRODUCTION VALIDATED CD8+ T-CELL RESPONSES
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Ardigen computational system

Ardigen ArdImmune Vax

● NGS best practices guidelines from 
GATK and Illumina for NGS data 
processing and quality control. 

● In-house protocol for variant 
calling optimization and filtering. 

● Validated using publicly available 
gold standard [4].

Fig. 1. Personalized cancer vaccine therapy process using peptide delivery platform:
1. DNA and RNA from patient's tumor (FFPE) and normal (PBMC) samples are extracted and sequenced.
2. Raw WES and RNAseq data are processed by Ardigen’s computational system.
3. A peptide-based vaccine composition is proposed by ArdImmune Vax. 
4. Peptides are produced under GMP requirements.
5. At the Cancer Center the final formulation of injection is prepared including adding any adjuvants. 
6. The vaccine is administered to the patient and clinical parameters of response are monitored.
   

Fig. 3. Composition of datasets. Left: details of datasets included in the presented study. We consider patients with 
CD8+ response from [1] and [2]. The dataset from [2] (Dataset B) is a curated collection from other publications [5-7]. 
Dataset A is a subset of patients from [1] from which we dropped 10 patients with no available raw data (WES and 
RNA-seq). In both datasets we consider the subset of patients with observed CD8+ T cell response. Right: Number of 
patients per response type (for the entire set from [1]) and per cancer type (for Datasets A and B). 

CD8+ responses were verified experimentally as follows: autologous APCs were either transfected with minigenes 
encoding the mutation flanked by nucleotides from the wild-type gene or pulsed with long peptides (~25AA) 
including the mutation of interest. Reactivity of patients’ tumor TILs or PBMC was tested using IFNγ ELISPOT assay. 
Additionally, for dataset A flow cytometric analyses for 4-1BB up-regulation on CD8+ T cells were performed [1]. 

Fig. 4. Results on dataset A. Top: two ranked lists of mutations for each patient with the immunogenic mutations 
marked in purple and potentially toxic/tolerated peptides marked in red. The green bar denotes top-20 peptides. 
Top-left: ArdImmune Vax, Top-right: netMHCpan 4.0 [8]. These panels involve 28 patients with 37 immunogenic 
mutations. Bottom-left: mean number of immunogenic peptides detected per patient using selected tools: 
netMHCpan 4.0, netMHCpan 4.0 with filtering by expression (TPM > 0), and MHCflurry [9]. Bottom-right: mean 
number of immunogenic peptides detected per patient for two indication groups (CRC and CCA, PCA, EC, GC) using 
ArdImmune Vax. Confidence intervals in the plots represent 90% confidence intervals of the mean value. The 
maximum of the y-axis corresponds to the maximum possible value of the metric (equal to 1.3).
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Fig. 5. Results on dataset B. Top: two ranked lists of mutations for each patient with the immunogenic mutations 
marked in purple. The green bar denotes top-20 peptides. Top-left: ArdImmune Vax, top-right: netMHCpan 4.0 [8]. 
These panels involve 10 patients with 21 immunogenic mutations. Bottom-left: mean number of immunogenic 
peptides detected per patient using selected tools: netMHCpan 4.0, netMHCpan 4.0 with filtering by expression 
(TPM > 0), and MHCflurry [9]. We also include the results of the EDGETM algorithm [2] (using the scores reported in 
[2] for the considered dataset). Bottom-right: mean number of immunogenic peptides detected per patient for 
two indications (CRC and Mel) using ArdImmune Vax. Confidence intervals in the plots represent 90% confidence 
intervals of the mean value. The maximum of the y-axis corresponds to the maximum possible value of the metric 
(equal to 2.1).

DISCUSSION

● We benchmarked vaccine design methods on two datasets. Dataset A contains immunologically validated 
mutations not filtered by affinity prediction tools. As a result this dataset is relatively large and unbiased.

● Vaccine design workflows considering solely pHLA affinity prediction (even when filtered by expression) allow 
the inclusion of potentially toxic/tolerated peptides within the proposed vaccine formulation. 

● Neoepitope relative clonal abundance and manufacturability should be also considered in personalized cancer 
vaccine design.

● Dataset A [1] contains patients with missing or incomplete existing immune responses (only CD4+, only CD8+) 
which indicates that stimulating novel immune responses is a needed and valid therapeutic strategy.

● Current work on ArdImmune Vax is focused on extending the method to HLA-class II epitopes in order to 
enable the design of personalized cancer vaccine formulations accounting for both CD8+ and CD4+ T cells 
activation.
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