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ABSTRACT

Toxicity remains one of the major challenges in the drug discovery process, with an 
estimated 30% of drug candidates failing during development due to toxic effects1. This 
highlights the ongoing need to improve current toxicity assessment methods in order to 
detect harmful effects as early and accurately as possible.

Despite recent technological advances, the cell based assays currently used for testing 
compound toxicity have significant sensitivity limitations. Typically, the concentrations at 
which  a toxicity effect is detected in in vitro assays greatly exceed the concentrations 
required to elicit toxicity in a real organism. This makes the resulting calculations for IC50 
or PoD (Point of Departure) highly unreliable in in vivo studies, calling for the development 
of new methods capable of capturing the toxicity at lower concentrations.

To address these challenges, we’ve adapted an eXplainable Convolutional neural network 
for Multivariate Time Series classification (XCM)2 by treating concentrations as time points 
to analyze Cell Painting assay data. We selected this method to address the nature of 
increasing doses, which can mimic temporal progression. Additionally, using 
a CNN-based approach enables analysis of the importance of both features and 
concentrations through the Grad-CAM method3. 

CONCLUSIONS

▪ The eXplainable Convolutional Neural Network for Multivariate Time Series classification (XCM) is a valuable approach for detecting the early onset of 

toxicity in Cell Painting images.

▪ In addition, the method enables interpretation of results by highlighting image features driving model decisions.

▪ These promising initial findings warrant further investigation with larger datasets and more comprehensive exploration of time series architectures.

Table 1 The table presents the average ROC AUC scores achieved by different modeling approaches for predicting the toxicity types 
analyzed in this study. “All”- Models trained on the full set of compounds; “Only active”- Models trained only on compounds that 
showed phenotypic changes at any tested concentration, based on Anomaly score; “Multilabel”- Models trained to predict all toxicity 
types simultaneously. For XCM, all tested concentrations were used in training, whereas for MLP models were trained on the highest 
concentration with an exception of “All conc(entrations)”. The results indicate that the optimal modeling approach varies depending on 
the toxicity type, with different strategies yielding the best performance for different endpoints.

Method
XCM MLP

All Only active Multilabel All Only active Multilabel All conc.

DILI 0.507 0.560 0.582 0.585 0.579 0.573 0.601

Cardio 0.577 0.644 0.532 0.605 0.662 0.622 0.580

AMES 0.509 0.632 0.637 0.535 0.601 0.634 0.611

RESULTS

▪ Our initial study, conducted on a small dataset of Cell Painting images (200 compounds), 
demonstrates the feasibility of using time series model for early toxicity detection and 
dose–response estimation.

▪ In this study, the XCM method was applied to track changes in individual image features 
as a function of compound concentration (analogous to time points) (Fig. 1).

▪ A comparison between the XCM and MLP methods revealed differences in predictive 
performance, depending on the type of toxicity and the training setup (Table 1). 

▪ Further analysis of individual compounds highlights the complementary nature of different 
toxicity prediction approaches vs cell count and anomaly detection (Fig. 2).

▪ Importantly, the XCM method enables biological interpretation by identifying image 
features that drive model decisions (Fig. 3A). It also shows the potential to detect early 
signs of toxicity in cellular phenotypes (Fig. 3B).
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Figure 1 Prior to image acquisition, HUH7 cells were treated with compounds at 5 concentrations and stained using Cell Painting4 
protocol. In the next step, images corresponding to selected compounds and concentrations were featurized using CellProfiler5. Then, 
we applied classifiers, XCM2 and MLP to capture the phenotypic effect of the early onset of various types of cellular toxicity. XCM 
additionally provides an interpretation of the results.
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Figure 2 Different cases illustrate the complementary nature of the methods used in the study. A) For tolcapone, a compound associated 
with hepatotoxicity, the XCM method successfully captured the early changes in cell morphology, while both the MLP and anomaly 
detection methods failed to do so. B) In the case of domperidone, only the MLP method was able to predict its cardiotoxicity.
Notably, both XCM and MLP predicted toxicity for compounds that did not induce any cell death. C) Here, the performance of both XCM 
and MLP closely correlates with cell count, which is also reflected by anomaly detection—an unsupervised method for identifying 
significant changes in cellular morphology. These findings highlight the potential of XCM and MLP methods for predicting toxicity 
independently of cell viability.

A. Tolcapone: mitochondrial toxicity (DILI) B. Domperidone (Cardio) C. 2-Methoxyestradiol (AMES)
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Figure 3 Interpretation modules in the XCM method. A) importance of individual input features across varying concentrations, 
highlighting those most influential in driving the model’s prediction. B) cumulative importance of each concentration, indicating that the 
model begins detecting relevant signals at lower concentrations.
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