Initial Insights into Cost-Efficient Al Toxicity Profiling: Cell Painting + Chemical Structures

Krzysztof Rataj, Aleksandra Nowak, Magdalena Otrocka, Adriana Borowa, Nasim Jamali, Michat Warchot
Ardigen, Krakow, Poland

Ardigen

ABSTRACT METHODS RESULTS

Toxicity is one of the most common reasons for failure in late stage drug development, Featur neration e Comparison of results across various data setups indicates that multimodal models that combine image and
accounting for 30% of non-successful projects'. While multiple assays for various toxicity SHELLIE pfenistelt g chemical structure representations achieve better average performance for both DILI and cardiotoxicity

types are available, they usually are quite costly and unfit to be run in a high-throughput Image  features  were Cell Painting prediction, outperforming models using only a single data modality.
setting. This makes them only feasible at the late stage drug discovery, where failure results generated using convo- images GapNet

in a significant time and resource penalty to the project. Quantitative Structure-Activity lutional neural network N
Relationship (QSAR) toxicity prediction methods could be applied at the earlier stage of the GapNet and ECFP was ) )
projects, however, their use is limited to the chemical space of the training data and the applied to featurise (

method often fails for novel chemical structures. chemical structures. Chemical ECEP

Here we present an endeavor to create a dataset of small molecule treatments visualized structures £ }
with the target-agnostic Cell Painting assay?, that captures the early onset of various types enturiver e Training the models excllusively on compounds §howing v.isible. Phenotypic eﬁect§ yielded high avgrage
of toxicity, such as hepato-, cardio-, and genotoxicity. This data, screened in relevant cell performance, even for image-based models. Critically, this training subset also introduced the highest
lines and analyzed with multimodal Artificial Intelligence algorithms allows us to build models variability in the resulting ROC AUC values, depending on the specific train-test split used for the experiment.

capable of assessing the treatment toxicity with high accuracy and throughput. Evaluation scheme Interestingly, despite the experiments being conducted in a hepatocyte cell line, the cardiotoxicity prediction

For the proof of concept project we selected a single hepatocyte HUH7 cell line and tested models showed good results—in some cases, even better than the DILI models. This counterintuitive finding

I . . : . The data was split into train - test split where for each of the considered toxicity types 80% of T . o -
an initial small set of compounds with known toxicities. The results show that using multiple - . . - . may indicate that cardiotoxicity prediction based on general cellular morphology changes may be cell
" . . . . compounds known to have that toxicity was used to train the Al model, while the remaining 20% were
modalities, here image and molecular structure, improves the predictive power over single line-agnostic.

. " . L used to test it. This split was performed 20 times with different random seeds to ensure that the effect
modality models. Additionally, we are able to detect and predict cell-line independent _ . _ _ _ o
L . o . . of compound selection would be accounted for. Additionally, a separate subset of compounds with A) All data B) Highest concentrations C) Visible effect
toxicities, such as cardiotoxicity signals in a hepatocyte cell line. . _ . 5
visible effect (approximately 25% of the compounds) on cell morphology was selected for additional |
evaluation. 0.9

e The classifiers trained to distinguish toxic compounds from the DMSO control display predictably high
performance. For models using imaging features, performance is high (ROC AUC > 0.7 in almost all cases),
and it reaches the maximum (ROC AUC = ~1) for models combining structure and imaging features.
However, performance significantly drops for models trained to distinguish between toxic and non-toxic
compounds.
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DATASET

We generated a data set of Cell Painting images for approximately 200 compounds with

public toxicity annotations from various databases, including DILIst® and hERGCentral*. The 100000888DN( [ Ve ]
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compounds were tested in HUH7 hepatocyte cell line at 5 concentrations in 2 technical and IR, = _ )
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We tested multiple training setups where Multiple Layer Perceptron (MLP) is trained to predict known ' ' %

Predictions

toxicity. Training setups differ in: modality (image, structure, or joint), toxicity type (DILI - Drug-Induced
Liver Injury and Cardiotoxicity), and the definition of the non-toxic class. We highlight 3 different

CONCLUSIONS possible sets of non-toxic classes.

e A multimodal approach improves the efficiency of predictive models: Combining 4 )
Cell Painting and chemical structures consistently improved predictive toxicity models, Non-toxic DILI

yielding better ROC AUC values across nearly all tests. DMSO vehicle Image

ROC AUC
ROC AUC
ROC AUC

Cardiotoxicity

A bigger dataset is needed to train better models: Though well-performing toxicity treatment, \[ Hon-toxie ][ foxe
prediction classifiers could be trained even using a small dataset, larger data set is Negcon non-toxic —= Structure ' r

essential to achieve significant improvement in model performance and predictive compounds,
accuracy. Other compounds

Compound concentration range should be optimised: The low concentrations used toxic " .dn°ferent type Modality
of toxicity than the EE Image

to gvo!d simple cell deat.h failed tc? induce morphological changesllr? mqst compounds. tested one. Input Classification Output 1 o Structure
Adjusting the concentration range is needed to capture relevant toxicity signals. (features) (MLP) (toxicity results) L
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FUTURE PERSPECTIVE Toxicity tool advantages Fig. 1 Performance of MLPs trained to predict Drug-Induced Liver Injury (DILI) and Cardiotoxicity using:

Ardigen is building a toxicity prediction tool based on a dedicated Cell Painting dataset. m A, D) All data: Model trained on all compounds across all tested concentrations,

B, E) Highest concentrations: Model trained only on data points from all compounds at the two highest tested
concentrations,

C, F) Visible effect: Model trained only on data points corresponding to compounds that showed a visible

Proprietary models -
P y experimental screen. phenotypic effect at the highest concentrations.
a X ' i . . = Violin plots illustrate the distribution of ROC AUC metric across all train-test splits. The models were trained to
Time and cost-efficiency:
3 I-flxepatotoxicity

(] . distinguish either DILI or Cardiotoxic compounds from DMSO, Negcon, Other (see Methods, Predictions)
screening hundreds of - ] " -
ooo compounds, and combined controls. The plots are color-coded based on the data modalities used for training of

Gardiotoxicy ‘ compounds for multiple toxicity 5 each respective model (Image, Structure, joint: Image+Structure).
Genotoxicity types in a single experiment

§ within 4 weeks.
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If you want to know more or collaborate on the project come to the booth #22
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