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RESULTS

● Comparison of results across various data setups indicates that multimodal models that combine image and 
chemical structure representations achieve better average performance for both DILI and cardiotoxicity 
prediction, outperforming models using only a single data modality.

● The classifiers trained to distinguish toxic compounds from the DMSO control display predictably high 
performance. For models using imaging features, performance is high (ROC AUC > 0.7 in almost all cases), 
and it reaches the maximum (ROC AUC =  ~1) for models combining structure and imaging features. 
However, performance significantly drops for models trained to distinguish between toxic and non-toxic 
compounds.

● Training the models exclusively on compounds showing visible phenotypic effects yielded high average 
performance, even for image-based models. Critically, this training subset also introduced the highest 
variability in the resulting ROC AUC values, depending on the specific train-test split used for the experiment.

● Interestingly, despite the experiments being conducted in a hepatocyte cell line, the cardiotoxicity prediction 
models showed good results—in some cases, even better than the DILI models. This counterintuitive finding 
may indicate that cardiotoxicity prediction based on general cellular morphology changes may be cell 
line-agnostic.

ABSTRACT

Toxicity is one of the most common reasons for failure in late stage drug development, 
accounting for 30% of non-successful projects1. While multiple assays for various toxicity 
types are available, they usually are quite costly and unfit to be run in a high-throughput 
setting. This makes them only feasible at the late stage drug discovery, where failure results 
in a significant time and resource penalty to the project. Quantitative Structure-Activity 
Relationship (QSAR) toxicity prediction methods could be applied at the earlier stage of the 
projects, however, their use is limited to the chemical space of the training data and the 
method often fails for novel chemical structures. 
Here we present an endeavor to create a dataset of small molecule treatments visualized 
with the target-agnostic Cell Painting assay2, that captures the early onset of various types 
of toxicity, such as hepato-, cardio-, and genotoxicity. This data, screened in relevant cell 
lines and analyzed with multimodal Artificial Intelligence algorithms allows us to build models 
capable of assessing the treatment toxicity with high accuracy and throughput.
For the proof of concept project we selected a single hepatocyte HUH7 cell line and tested 
an initial small set of compounds with known toxicities. The results show that using multiple 
modalities, here image and molecular structure, improves the predictive power over single 
modality models. Additionally, we are able to detect and predict cell-line independent 
toxicities, such as cardiotoxicity signals in a hepatocyte cell line.

CONCLUSIONS
● A multimodal approach improves the efficiency of predictive models: Combining 

Cell Painting and chemical structures consistently improved predictive toxicity models, 
yielding better ROC AUC values across nearly all tests.

● A bigger dataset is needed to train better models: Though well-performing toxicity 
prediction classifiers could be trained even using a small dataset, larger data set is 
essential to achieve significant improvement in model performance and predictive 
accuracy.

● Compound concentration range should be optimised: The low concentrations used 
to avoid simple cell death failed to induce morphological changes in most compounds. 
Adjusting the concentration range is needed to capture relevant toxicity signals.
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Fig. 1 Performance of MLPs trained to predict Drug-Induced Liver Injury (DILI) and Cardiotoxicity using: 
A, D) All data: Model trained on all compounds across all tested concentrations, 
B, E) Highest concentrations: Model trained only on data points from all compounds at the two highest tested 
concentrations, 
C, F) Visible effect: Model trained only on data points corresponding to compounds that showed a visible 
phenotypic effect at the highest concentrations.

Violin plots illustrate the distribution of ROC AUC metric across all train-test splits. The models were trained to 
distinguish either DILI or Cardiotoxic compounds from DMSO, Negcon, Other (see Methods, Predictions) 
compounds, and combined controls. The plots are color-coded based on the data modalities used for training of 
each respective model (Image, Structure, joint: Image+Structure).
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A) All data  B) Highest concentrations C) Visible effect

D) All data  E) Highest concentrations F) Visible effect

METHODS

Feature generation

Image features were 
generated using convo- 
lutional neural network 
GapNet and ECFP was 
applied to featurise 
chemical structures.
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Evaluation scheme

The data was split into train - test split where for each of the considered toxicity types 80% of 
compounds known to have that toxicity was used to train the AI model, while the remaining 20% were 
used to test it. This split was performed 20 times with different random seeds to ensure that the effect 
of compound selection would be accounted for. Additionally, a separate subset of compounds with 
visible effect (approximately 25% of the compounds) on cell morphology was selected for additional 
evaluation.

Additional evaluation setTrain - test split

Phenotypic effect analysis
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Not visible

Predictions

We tested multiple training setups where Multiple Layer Perceptron (MLP) is trained to predict known 
toxicity. Training setups differ in: modality (image, structure, or joint), toxicity type (DILI - Drug-Induced 
Liver Injury and Cardiotoxicity), and the definition of the non-toxic class. We highlight 3 different 
possible sets of non-toxic classes.

Non-toxic

● DMSO vehicle 
treatment,

● Negcon non-toxic 
compounds,

● Other compounds 
toxic in different type 
of toxicity than the 
tested one. Classification

(MLP)
Input

(features)

Image

Joint

Structure

Output
(toxicity results)

DILI

Non-toxic Toxic

Cardiotoxicity

Non-toxic Toxic

DATASET

We generated a data set of Cell Painting images for approximately 200 compounds with 
public toxicity annotations from various databases, including DILIst3 and hERGCentral4. The 
compounds were tested in HUH7 hepatocyte cell line at 5 concentrations in 2 technical and 
2 biological replicates. 

Data acquisition 0.01μM 10μM
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FUTURE PERSPECTIVE
Ardigen is building a toxicity prediction tool based on a dedicated Cell Painting dataset.

● Toxicity profiles: multiple types 
of toxicity in a single 
experimental screen.

● Time and cost-efficiency: 
screening hundreds of 
compounds for multiple toxicity 
types in a single experiment 
within 4 weeks.

● Higher chance of identification 
of toxic compounds at an early 
stage of drug discovery project.

Toxicity tool advantages

If you want to know more or collaborate on the project come to the booth #22  
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